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Numerical evidence for stretched exponential relaxations in the Kardar-Parisi-Zhang equation
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We present results from extensive numerical integration of the Kardar-Parisi-ZK&) equation in 1
+1 dimensions aimed to check the long-time behavior of the dynamical structure factor of that system. Over a
number of decades in the size of the structure factor we confirm scaling and stretched exponential decay. We
also give an analytic expression that yields a very good approximation to the numerical data. Our result clearly
favors stretched exponential decay over recent results claiming to yield the exact time dependent structure
factor of the 1+1-dimensional KPZ system. We suggest a possible solution to that contradiction.
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Many interesting dynamical phenomena in condensed In recent years there has been a growing interest in the
matter physics are described in terms of nonlinear field equadynamical properties of the KPZ system. A question of great
tions driven by noise. A long list of examples includes tur-interest regards the long-time behavior of the dynamical
bulence, critical dynamics, the dynamics of interacting poly-structure factom(t) =(h,(0)h_4(t))s, whereh(t) is the Fou-
mers, ballistic depositiogas well as other growth modgls rier transform of the height functioh(r,t), and (---)g de-
etc. The Kardar-Parisi-Zhan@PZ) equation that describes notes steady-state averaging over the noise. Notice that by
a growing surface under ballistic depositigh2] is such a  definition d,(0)= ¢,, where ¢, is the static two-point func-
model. This equation formulated in terms of a height func-jgn.
tion h(r,t) driven by external noise is given by Using a self-consistent approach, Schwartz and Edwards

were able to predict a stretched exponential decaybfgt)

dh(r,1) A _ [8,9]. Regarding the KPZ system, they found the following
T Wh+ E(Vh)2 + (1), (1) long-time asymptotic behavior
— _~ytllz
where v is a diffusion constant) is the coupling constant Dy(t) ~ Copg(yqtt?) 4 D2t )

(that controls the sticking rate of the deposited matgraid
7(f,t) is a noise term driving the equation that models thewherec and y are dimensionless constaritsot necessarily
randomness of the falling material. The noise is usually chod), d is the dimension, and is the dynamic exponent. The
sen to be Gaussian, with zero mean and second moment Ssame asymptotic behavior was also predicted analytically by
Colaiori and Moore[10] using a mode-coupling approach.
> 21\ > > ) Later, Colaiori and Moore solved numerically the mode-
(n(F,O)7(" ') = 2D (F = ) St - 1), @ coupling equations in one dimensigtl] and confirmed the
) ) ) . ) asymptotic analysis for the long-time behavior. Surprisingly,
Wher_ed is the substrate dimension abg specifies the noise they also found thatb,(t) decays to zero in an oscillatory
amplitude. _ manner—a fact that was not revealed by the analytical tools.
The KPZ equation has been suggested 17 year§ gt It should be stressed, however, that the above describe
an extension of the linear Edawards-Wilkinson equaf®in 4|y approximations to a solution of the KPZ equation. Even
so that a lot of research has been done on the statisticgl,"exact solution of either the self-consistent expansion
p_ropertlgs of the _surfaces that this equaylon grows. An_extertSCE) equation or the mode-coupling equation would pro-
sive review of this work can be found in Refgl~7]. Itis  \jge only an approximation for the real, time-dependant
well known that KPZ surfaces are self-affine, and are wellgiy,cture factordq(t) of the KPZ equation. Indeed, a more
described by two scaling exponents, namely, the roughnegﬁcent publication by Prahofer and Spohn suggests that the
exponenta and the dynamic exponeat It turns ou_t that in envelope of the one-dimensional structure factor decays ex-
the KPZ system these two exponents are n_ot_lqdependerBonemia”y rather than as a stretched exponefii2]. They
Due to symmetry of Eq(1) with respect to infinitesimal i an exact solution for the time-dependant structure fac-
tilting [4], the famous scaling relatiom+2=2 is established. -y, ot another model in the universality class of the KPZ

Furthermqre, fqr the spemal case thbnl, the existence of system, namely, the polynuclear growth model. The actual
a fluctuation-dissipation theorem gives the exact result o) ion for the structure factor follows a number of well-
=1/2 andz=3/2. defined steps involving some direct though complicated nu-
merical calculations. Those calculations are reported to be
performed with extremely high precision that seems to en-
*Electronic address: eytak@post.tau.ac.il sure that the final solution for the structure factor is not af-
"Electronic address: mosh@tarazan.tau.ac.il fected by inaccuracies in the numerical procedure. Although
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FIG. 1. A log plot of the scaling functiori(wgt) for various
smallg’s.

the solution they present is numerical, it is rather obviou
that the envelope decay is exponential rather than stretch
exponential.

This discrepancy motivated us to check the above result
directly on the KPZ equation. In this work we find numerical t
support for the existence of stretched exponential relaxation
in the KPZ system in 1+1 dimensions in contradiction to

Ref. [12]. We also get direct evidence for the oscillatory
behavior ofd®(t). As a by product, we were able to verify

the predicted short-time behavior of the dynamical structure

factor (given in Ref.[13] for examplg, and the validity of
the scaling hypothesis for smajls.

We discretized the KPZ equatiofl) on a one-
dimensional lattice, with lattice constafk, and time differ-
enceAt,

d

Ls

(Ax)? i=1

h(x,t + At) = h(x,t) + { [ h(x + Ax,t) — 2h(x,t)

+h(x—Axt)] + %[h(x +Ax,t) —h(x - Ax,t)]z}

+a(12At) (1), (4)
where 0?=2DyAx and the random numbers(t) are uni-
formly distributed between -1/2 and 1/2. In this work we
usedL=1024,At=0.05,Ax=1, v=1, \=4, andDy=16. Af-

ter reaching steady state, at each time step we Fourier trans-

formed the discrete height function, and obtairigd) for
q=dp, 299, - - -, Whereqy=27/1024. Then we calculated the
two-point function(h,(0)h_4(t))s by averaging over all pairs
with a time difference, for q=30qq, 600y, 1207y, and 24@,.

First, the scaling hypothesis was numerically verified, i.e.

in Fig. 1 we plot f(wgt) =Pg(t)/ ¢ as a function ofwgt
=Bqt with z=3/2 for g=30q,, q=60q,, andg=12Qy,. The
plot indicates good scaling.

PHYSICAL REVIEW B9, 052603(2004)

q=240q0
— q=120q, |

FIG. 2. Alog plot of the scaling functiof(wgt) for =120y,

andq=120g.

correct only up tog's that are of order of~10% of the
groestq in the system.

Figure 1 indicates good scaling at least up to d0
herefore, we invested most of the computational effort in
is Fourier component, since K@) indicates that the larger
we take, the faster computational time evolution we get.
or =120y, we took 5x 10'° integration time steps akt.
Taking this component we found clear evidence for oscilla-
tory behavior as shown in Fig. 3.

The error estimate in Fig. 3 was obtained using the imagi-
nary part of (hy(O)h_4(t))s after averaging. Note that
(hq(0)h_4(1))s should be real, due to averaging, while each
contribution of the fornh,(0)h_q(t) is certainly not real. This
means that the imaginary part, which should vanish eventu-
ally, is a sensible error estimate. An independent argument
for the estimation of the error, which yields the same order of
magnitude runs as follows: consider the case where there is
no correlation at all and estimate the “apparent correlation”
due to the finite sample. The total number of time steps is
N=5X10'°. Therefore, this is also the number of pairs
(hg,h_g) separated by a timé=nAt with n<N. The mea-
sured correlation is

— g=120q,

-~~~ error gstimate ||

20 40 (Dqt 60 80 100

However, we found that the scaling hypothesis breaks

down when takingg=24Qy, (see Fig. 2 which means that
the scaling, which is supposed to be correct for small is

FIG. 3. A log plot of f(wqt) for q=120g, with an error
estimate.
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FIG. 6. A fit of f(wqt) using e‘“/(“qt)m{cos{ﬁ(wqt)m]
+D sin B(wg)*3]} with y=0.93, =0.034, andD=32.7. Both
curves practically join over most of the time range.

FIG. 4. Alog plot of f(wgt) for small wgt’s.

N

1
(hg(O)h_4(1)) = Nz ha(iADN_ o[ (i +n)At]. ®  shownin Fig. 6. This has the right smaijt behavior as well
as the envelope stretched exponential decay.

In the absence of correlation, the sum on the right-hand side The fit is very good, especially when keeping in mind that
of Eq.(5) is a sum ofN random variables. Therefore, the size this fit involves more than 6 orders of magnitude in the size
of the apparent correlation is of ordsir/2, which is of the  of the scaling function Fig. 6. An attempt to replace the 2/3
order ofe 2, in the stretched exponentigh the ansatgwith an arbitrary

Using this result we extracted the short-time behavior ofexponent that will be determined by the fitting procedure
the scaling function. In Ref13] Colaiori and Moore predict yields a very close valué~0.65. Actually, we also tried to
(1) < [ 1~ (wgt)"7]. Now, in one dimensiof'=2 (I' is  fit an exponential decagrather than a stretched exponential
related to the roughness exponentvia I'=d+2a) andz  one), according to the finding of Ref12], that gave a fit that
=3/2, sothat for a specific] we getf(wgt) = 1-(wgt)”3. This  was definitely worseéFig. 7).
prediction was indeed verified by our data as shown in At this point we are facing an interesting contradiction.
Fig. 4. First, we have results following from four independent ap-

The error estimates presented in Fig. 3 suggest that theroaches. (1) Analytical asymptotic study of the self-
data may be useful in the range<@yt<55. Since we consistent approximatioti2) Analytical asymptotic study of
wanted to check a stretched exponential decay, we multipliethe mode-coupling approximatio(8) Numerical solution of
our numericalf(wgt) by exp[ywqt]z’3. We chosey=0.93 so  the mode-coupling equation&) The present direct numeri-
as to render the resulting function to be oscillating in thatcal integration of the KPZ equation. All these independent
region. Motivated by the predictions of Rgfl3] and our approaches yield the same stretched exponential decay. On
previous verification of it we present the resulting function asthe other hand, we have a publicatipt?] claiming to be
a function of(wqt)‘”3 in Fig. 5. exact that yields a result that is quite different from the re-

We were thus led to try the fie—y(wqt)2/3{cos{[g(wqt)4/3] sults obtained from all the above mentioned methods. It is

+D sin B(wgt)*3]} for the full scaling functionf(wyt), as 0
— fo )
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FIG. 7. A fit of f(wgt) using e ed{codB(wyt)*?]
FIG. 5. A simple fit is{cog B(wgt)**]+D sin B(wg)* ]} with  +D sin B(wgt)*3]}. The best fit of that form is obtained foy
£=0.034 andD=32.7. =0.21,8=0.326, andD=2.6.

052603-3



BRIEF REPORTS PHYSICAL REVIEW B9, 052603(2004)

possible that there is a flaw in the study presented in Ref. To summarize, using extensive numerical integration of
[12]. If there is, we have certainly not found any. We would the KPZ equation in 1+1 dimensions, this work gives clear
like to suggest here another solution to the problem. Refersupport for the scaling hypothesise., the fact that the scal-
ence[12] does not consider directly the KPZ equation buting function f(w4t) is the same for any, at least for small
rather the polynuclear growth model that was shown to bey's), verifies the short-time behavior given in RgE3] (i.e.,
equivalent to the directed polymer problem with specific®(t)  ¢[1-(wqt)!"4]) and establishes the oscillatory decay
boundary conditions, and thus in the same universality classf the dynamical structure factor to zefas suggested in

of the KPZ system. However, the point is that two modelsRef. [11]). In addition, we show that the stretched exponen-
that are in the same universality class must have the samal describes the decay of the structure factor over six orders
exponents but not necessarily the same scaling functions. lof magnitude in its size. This implies that the KPZ problem
fact, it is possible to construct families of exactly solvableis likely to be a respected member of the family of systems
models where all the members of the family are characterthat exhibit slow relaxations—thus opening the door for mu-
ized by the same exponents yet have radically different timetual influence between the community of surface growth and
dependant structure factors. We will not go into this here buthat of slow dynamics.

the interested reader could find the relevant ideas, although The present work consumed quite a few months of CPU
presented in a different context, in R€f4]. Our suggestion time on a Pentium 4 machine. In spite of that, we believe that
for solving the puzzle is thus that Préhofer and Sppt?]  the results presented here should motivate a much heavier
obtain the correct decay for the polynuclear growth modelpumerical effort to deal with a region with largert's for
which is in itself a most impressive feat, but this is not thethe one-dimensional system and hopefully with the two-
decay of the KPZ structure factor. dimensional system.
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