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We present results from extensive numerical integration of the Kardar-Parisi-Zhang(KPZ) equation in 1
+1 dimensions aimed to check the long-time behavior of the dynamical structure factor of that system. Over a
number of decades in the size of the structure factor we confirm scaling and stretched exponential decay. We
also give an analytic expression that yields a very good approximation to the numerical data. Our result clearly
favors stretched exponential decay over recent results claiming to yield the exact time dependent structure
factor of the 1+1-dimensional KPZ system. We suggest a possible solution to that contradiction.
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Many interesting dynamical phenomena in condensed
matter physics are described in terms of nonlinear field equa-
tions driven by noise. A long list of examples includes tur-
bulence, critical dynamics, the dynamics of interacting poly-
mers, ballistic deposition(as well as other growth models),
etc. The Kardar-Parisi-Zhang(KPZ) equation that describes
a growing surface under ballistic deposition[1,2] is such a
model. This equation formulated in terms of a height func-
tion hsrW ,td driven by external noise is given by

] hsrW,td
] t

= n¹2h +
l

2
s¹hd2 + hsrW,td, s1d

wheren is a diffusion constant,l is the coupling constant
(that controls the sticking rate of the deposited material), and
hsrW ,td is a noise term driving the equation that models the
randomness of the falling material. The noise is usually cho-
sen to be Gaussian, with zero mean and second moment

khsrW,tdhsrW8,t8dl = 2D0ddsrW − rW8ddst − t8d, s2d

whered is the substrate dimension andD0 specifies the noise
amplitude.

The KPZ equation has been suggested 17 years ago[1] as
an extension of the linear Edawards-Wilkinson equation[3],
so that a lot of research has been done on the statistical
properties of the surfaces that this equation grows. An exten-
sive review of this work can be found in Refs.[4–7]. It is
well known that KPZ surfaces are self-affine, and are well
described by two scaling exponents, namely, the roughness
exponenta and the dynamic exponentz. It turns out that in
the KPZ system these two exponents are not independent.
Due to symmetry of Eq.(1) with respect to infinitesimal
tilting [4], the famous scaling relationa+z=2 is established.
Furthermore, for the special case whend=1, the existence of
a fluctuation-dissipation theorem gives the exact resulta
=1/2 andz=3/2.

In recent years there has been a growing interest in the
dynamical properties of the KPZ system. A question of great
interest regards the long-time behavior of the dynamical
structure factorFqstd=khqs0dh−qstdlS, wherehqstd is the Fou-
rier transform of the height functionhsrW ,td, and k¯lS de-
notes steady-state averaging over the noise. Notice that by
definition Fqs0d=fq, wherefq is the static two-point func-
tion.

Using a self-consistent approach, Schwartz and Edwards
were able to predict a stretched exponential decay forFqstd
[8,9]. Regarding the KPZ system, they found the following
long-time asymptotic behavior

Fqstd , cfqsgqt1/zdsd−1d/2e−gqt1/z
, s3d

wherec and g are dimensionless constants(not necessarily
1), d is the dimension, andz is the dynamic exponent. The
same asymptotic behavior was also predicted analytically by
Colaiori and Moore[10] using a mode-coupling approach.
Later, Colaiori and Moore solved numerically the mode-
coupling equations in one dimension[11] and confirmed the
asymptotic analysis for the long-time behavior. Surprisingly,
they also found thatFqstd decays to zero in an oscillatory
manner—a fact that was not revealed by the analytical tools.

It should be stressed, however, that the above describe
only approximations to a solution of the KPZ equation. Even
an exact solution of either the self-consistent expansion
(SCE) equation or the mode-coupling equation would pro-
vide only an approximation for the real, time-dependant
structure factorFqstd of the KPZ equation. Indeed, a more
recent publication by Prähofer and Spohn suggests that the
envelope of the one-dimensional structure factor decays ex-
ponentially rather than as a stretched exponential[12]. They
claim an exact solution for the time-dependant structure fac-
tor of another model in the universality class of the KPZ
system, namely, the polynuclear growth model. The actual
solution for the structure factor follows a number of well-
defined steps involving some direct though complicated nu-
merical calculations. Those calculations are reported to be
performed with extremely high precision that seems to en-
sure that the final solution for the structure factor is not af-
fected by inaccuracies in the numerical procedure. Although
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the solution they present is numerical, it is rather obvious
that the envelope decay is exponential rather than stretched
exponential.

This discrepancy motivated us to check the above results
directly on the KPZ equation. In this work we find numerical
support for the existence of stretched exponential relaxations
in the KPZ system in 1+1 dimensions in contradiction to
Ref. [12]. We also get direct evidence for the oscillatory
behavior ofFqstd. As a by product, we were able to verify
the predicted short-time behavior of the dynamical structure
factor (given in Ref.[13] for example), and the validity of
the scaling hypothesis for smallq’s.

We discretized the KPZ equation(1) on a one-
dimensional lattice, with lattice constantDx, and time differ-
enceDt,

hsx,t + Dtd = hsx,td +
Dt

sDxd2o
i=1

d Hnfhsx + Dx,td − 2hsx,td

+ hsx − Dx,tdg +
l

8
fhsx + Dx,td − hsx − Dx,tdg2J

+ ss12Dtd12hstd, s4d

where s2;2D0Dx and the random numbershstd are uni-
formly distributed between −1/2 and 1/2. In this work we
usedL=1024,Dt=0.05,Dx=1, n=1, l=4, andD0=16. Af-
ter reaching steady state, at each time step we Fourier trans-
formed the discrete height function, and obtainedhqstd for
q=q0,2q0, . . ., whereq0=2p /1024. Then we calculated the
two-point functionkhqs0dh−qstdlS by averaging over all pairs
with a time differencet, for q=30q0,60q0,120q0, and 240q0.

First, the scaling hypothesis was numerically verified, i.e.,
in Fig. 1 we plot fsvqtd;Fqstd /fq as a function ofvqt
=Bqzt with z=3/2 for q=30q0, q=60q0, andq=120q0. The
plot indicates good scaling.

However, we found that the scaling hypothesis breaks
down when takingq=240q0 (see Fig. 2) which means that
the scaling, which is supposed to be correct for smallq’s, is

correct only up toq’s that are of order of,10% of the
largestq in the system.

Figure 1 indicates good scaling at least up to 120q0.
Therefore, we invested most of the computational effort in
this Fourier component, since Eq.(3) indicates that the larger
q we take, the faster computational time evolution we get.
For q=120q0 we took 531010 integration time steps ofDt.
Taking this component we found clear evidence for oscilla-
tory behavior as shown in Fig. 3.

The error estimate in Fig. 3 was obtained using the imagi-
nary part of khqs0dh−qstdlS after averaging. Note that
khqs0dh−qstdlS should be real, due to averaging, while each
contribution of the formhqs0dh−qstd is certainly not real. This
means that the imaginary part, which should vanish eventu-
ally, is a sensible error estimate. An independent argument
for the estimation of the error, which yields the same order of
magnitude runs as follows: consider the case where there is
no correlation at all and estimate the “apparent correlation”
due to the finite sample. The total number of time steps is
N=531010. Therefore, this is also the number of pairs
shq,h−qd separated by a timet=nDt with n!N. The mea-
sured correlation is

FIG. 1. A log plot of the scaling functionfsvqtd for various
small q’s.

FIG. 2. A log plot of the scaling functionfsvqtd for q=120q0

andq=120q0.

FIG. 3. A log plot of fsvqtd for q=120q0 with an error
estimate.
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khqs0dh−qstdl =
1

N
o
i=1

N

hqsiDtdh−qfsi + ndDtg. s5d

In the absence of correlation, the sum on the right-hand side
of Eq. (5) is a sum ofN random variables. Therefore, the size
of the apparent correlation is of orderN−1/2, which is of the
order ofe−12.

Using this result we extracted the short-time behavior of
the scaling function. In Ref.[13] Colaiori and Moore predict
Fqstd~fqf1−svqtdG/zg. Now, in one dimensionG=2 (G is
related to the roughness exponenta via G=d+2a) and z
=3/2, sothat for a specificq we getfsvqtd~1−svqtd4/3. This
prediction was indeed verified by our data as shown in
Fig. 4.

The error estimates presented in Fig. 3 suggest that the
data may be useful in the range 0,vqt,55. Since we
wanted to check a stretched exponential decay, we multiplied
our numericalfsvqtd by expfgvqtg2/3. We choseg=0.93 so
as to render the resulting function to be oscillating in that
region. Motivated by the predictions of Ref.[13] and our
previous verification of it we present the resulting function as
a function ofsvqtd4/3 in Fig. 5.

We were thus led to try the fite−gsvqtd2/3
hcosfbsvqtd4/3g

+D sinfbsvqtd4/3gj for the full scaling functionfsvqtd, as

shown in Fig. 6. This has the right smallvqt behavior as well
as the envelope stretched exponential decay.

The fit is very good, especially when keeping in mind that
this fit involves more than 6 orders of magnitude in the size
of the scaling function Fig. 6. An attempt to replace the 2/3
in the stretched exponential(in the ansatz) with an arbitrary
exponent that will be determined by the fitting procedure
yields a very close values,0.65d. Actually, we also tried to
fit an exponential decay(rather than a stretched exponential
one), according to the finding of Ref.[12], that gave a fit that
was definitely worse(Fig. 7).

At this point we are facing an interesting contradiction.
First, we have results following from four independent ap-
proaches. (1) Analytical asymptotic study of the self-
consistent approximation.(2) Analytical asymptotic study of
the mode-coupling approximation.(3) Numerical solution of
the mode-coupling equations.(4) The present direct numeri-
cal integration of the KPZ equation. All these independent
approaches yield the same stretched exponential decay. On
the other hand, we have a publication[12] claiming to be
exact that yields a result that is quite different from the re-
sults obtained from all the above mentioned methods. It is

FIG. 4. A log plot of fsvqtd for small vqt’s.

FIG. 5. A simple fit ishcosfbsvqtd4/3g+D sinfbsvqtd4/3gj with
b=0.034 andD=32.7.

FIG. 6. A fit of fsvqtd using e−gsvqtd2/3
hcosfbsvqtd4/3g

+D sinfbsvqtd4/3gj with g=0.93, b=0.034, andD=32.7. Both
curves practically join over most of the time range.

FIG. 7. A fit of fsvqtd using e−gsvqtdhcosfbsvqtd4/3g
+D sinfbsvqtd4/3gj. The best fit of that form is obtained forg
=0.21,b=0.326, andD=2.6.
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possible that there is a flaw in the study presented in Ref.
[12]. If there is, we have certainly not found any. We would
like to suggest here another solution to the problem. Refer-
ence[12] does not consider directly the KPZ equation but
rather the polynuclear growth model that was shown to be
equivalent to the directed polymer problem with specific
boundary conditions, and thus in the same universality class
of the KPZ system. However, the point is that two models
that are in the same universality class must have the same
exponents but not necessarily the same scaling functions. In
fact, it is possible to construct families of exactly solvable
models where all the members of the family are character-
ized by the same exponents yet have radically different time-
dependant structure factors. We will not go into this here but
the interested reader could find the relevant ideas, although
presented in a different context, in Ref.[14]. Our suggestion
for solving the puzzle is thus that Prähofer and Spohn[12]
obtain the correct decay for the polynuclear growth model,
which is in itself a most impressive feat, but this is not the
decay of the KPZ structure factor.

To summarize, using extensive numerical integration of
the KPZ equation in 1+1 dimensions, this work gives clear
support for the scaling hypothesis(i.e., the fact that the scal-
ing function fsvqtd is the same for anyq, at least for small
q’s), verifies the short-time behavior given in Ref.[13] (i.e.,
Fqstd~fqf1−svqtdG/zg) and establishes the oscillatory decay
of the dynamical structure factor to zero(as suggested in
Ref. [11]). In addition, we show that the stretched exponen-
tial describes the decay of the structure factor over six orders
of magnitude in its size. This implies that the KPZ problem
is likely to be a respected member of the family of systems
that exhibit slow relaxations—thus opening the door for mu-
tual influence between the community of surface growth and
that of slow dynamics.

The present work consumed quite a few months of CPU
time on a Pentium 4 machine. In spite of that, we believe that
the results presented here should motivate a much heavier
numerical effort to deal with a region with largervqt’s for
the one-dimensional system and hopefully with the two-
dimensional system.
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